números conjugados complexos - translation to
DICLIB.COM
AI-based language tools
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

números conjugados complexos - translation to

NÚMERO QUE PODE SER ESCRITO NA FORMA A + BI, EM QUE A E B SÃO NÚMEROS REAIS E I A UNIDADE IMAGINÁRIA
Números Complexos; Números complexos; Numeros complexos; Numero complexo
  • 189x189px
  • 182x182px
  • miniaturadaimagem
  • 220x220px
  • 220x220px
  • 220x220px

lei dos grandes números         
TEOREMA FUNDAMENTAL DA PROBABILIDADE
Grandes números; Lei dos Números Grandes; Lei dos números grandes
- (физ.) закон больших чисел
números conjugados complexos      
сопряжённые комплексные числа
lei dos grandes números         
TEOREMA FUNDAMENTAL DA PROBABILIDADE
Grandes números; Lei dos Números Grandes; Lei dos números grandes
физ. закон больших чисел

Definition

infinitesimal
adj (infinitésimo+al3) Mat
1 Que se refere a infinitésimos.
2 Diz-se da parte da Matemática que trata do cálculo diferencial e do integral.

Wikipedia

Número complexo

Em matemática, um número complexo é um elemento de um sistema numérico que contém os números reais e um elemento específico denotado i, chamado de unidade imaginária, e que satisfaz a equação i2 = −1.

O fato de um número negativo não ter raiz quadrada parece ter sido claro para os matemáticos que se depararam com esta questão, até a concepção do modelo dos números complexos. Um número complexo é um número z {\displaystyle z} que pode ser escrito na forma z = x + y i {\displaystyle z=x+yi} , sendo x {\displaystyle x} e y {\displaystyle y} números reais e i {\displaystyle i} denota a unidade imaginária. Esta tem a propriedade i 2 = 1 , {\displaystyle i^{2}=-1,} sendo que x {\displaystyle x} e y {\displaystyle y} são chamados respectivamente parte real e parte imaginária de z {\displaystyle z} .

O conjunto dos números complexos, denotado por C {\displaystyle \mathbb {C} } , contém o conjunto dos números reais. Munido de operações de adição e multiplicação obtidas por extensão das operações de mesma denominação nos números reais, adquire uma estrutura algébrica denominada corpo algebricamente fechado, sendo que esse fechamento consiste na propriedade que tem o conjunto de possuir todas as soluções de qualquer equação polinomial com coeficientes naquele mesmo conjunto (no caso, o conjunto dos complexos). O conjunto dos números complexos também pode ser entendido por seu isomorfismo com um espaço vetorial sobre R {\displaystyle \mathbb {R} } , o conjunto dos reais.

Além disso, a cada número complexo podemos atribuir um número real positivo chamado módulo, dado por:

| z | = x 2 + y 2 . {\displaystyle |z|={\sqrt {x^{2}+y^{2}}}.}

O módulo de z, visto como uma norma no espaço vetorial, conduz a um espaço normado topologicamente completo.[carece de fontes?]

Os números complexos são representados geometricamente no plano complexo. Nele, representa-se a parte real, x , {\displaystyle x,} no eixo horizontal e a parte imaginária, y , {\displaystyle y,} no eixo vertical.

Os números complexos são utilizados em várias áreas do conhecimento, tais como engenharia, eletromagnetismo, física quântica, teoria do caos, processamento de sinais, teoria de controle, dinâmica de fluidos, cartografia, análise de vibração, além da própria matemática, em que são estudadas análise complexa, álgebra linear complexa, álgebra de Lie complexa, com aplicações em resolução de equações algébricas e equações diferenciais.

Em algumas situações, é comum a troca da letra i {\displaystyle i} pela letra j , {\displaystyle j,} devido ao frequente uso da primeira como indicação de corrente elétrica.